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Introduction

Birds

Common Kingfisher

Doesn’t bird coloration seem inefficient and dangerous for a tasty
bird? Maybe, but it helps solve an asymmetric information problem.
Female birds want to mate with high-quality mates. However, if
you ask any bird his quality, he will lie- it’s cheap talk. Color is not
cheap talk. A colorful bird is more likely to be spotted and eaten
by predators. The only birds who can afford to be brightly colored
are the ones that are not affected by this; the ones who can escape
anyway- the high-quality birds. In this way, the cost of predation
leads to a situation where bird coloring carries real information.

Denote Bird Color C ∈
[

1
2 , 1
]

and bird quality: Q ∈ [0, 1]. Let the

predation probability be: P (Q, C) =
(

1− Q
2

)
C and the mating prob-

ability: M (C). A bird’s fitness is the probability that he successfully
mates. That is, he is not eaten and mates:

Birds (Fitness) Utility: U = (1− P (Q, C)) M (C)

Suppose C is a choice for the birds (in reality it is not, but this is
a nice story anyway). Let us start with a situation where the female
birds ignore the information that would be carried by coloring. What
if M (C) = m? Of course, there is no reason to take a risk of being
brightly colored:

U =
(

1− C + C Q
2

)
m

δU
δc = m

(
−1 + Q

2

)
< 0

C = 1
2 .

But, if female birds pay attention to the signal, things are different.
What if M (C) = C?

Color as a Function of Quality

U =
(

C− C2 + C2 Q
2

)
δU
δc =

(
1− 2C

(
1− Q

2

))
C = 1

2
(

1− Q
2

) = 1
2−Q
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is this in the interest of female birds? Maybe, if their fitness is
increasing in the quality of their mate, and reducing uncertainty is
important enough. It comes at a cost, though, the probability of bird
survival is constant under this policy P = 1

2 while under a constant

coloration of C = 1
2 , P =

(
1
2 −

Q
4

)
. We would need more detail

to determine whether the mating policy of female birds: M (C) =

C is in some way optimal. I hope it’s clear that it could better than
ignoring color.

Brains

Common Graduation

Education can help solve an asymmetric information problem which
is similar to the one Birds face. Employers want high-quality em-
ployees. Attaining a high level of education is easier for high quality
types. Because of this, education has information content.

Denote education: e ∈ [1, 10] and worker quality: θ ∈ [1, 2].
Suppose the cost of education to a person with quality θ is: e

θ .
The ex-post Productivity (and also the wage in a competitive en-

vironment) isθ, but a company can’t observe θ. The only observe e.
Thus, the wage they pay is the ex-ante productivity: E (θ|e).

Let f (e) = E (θ|e). A worker is paid f (e) and has a cost of e
θ .

Thus, worker utility is: U (e, θ) = f (e)− e
θ . This is concave in e when

f is concave. The maximum occurs where f ′ (e) = 1
θ . Thus, if f is

concave, the optimal e must be increasing in θ. What a lovely signal. This story is most famously told in
Michael Spence (1973). "Job Market
Signaling". Quarterly Journal of
Economics. 87 (3): 355–374

Screening
Designing incentives to elicit information from a single individual.

Pricing a Single Indivisible Good.

Buyer:

Type: θ Known only to the buyer, not the seller.

Transfers: t

u (1|θ) = θ − t Utility of consuming the good.

u (0|θ) = 0 No consumption.
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Seller:

Maximizes revenue.

Believes θ ∼ F (θ), θ ∈ Θ =
[
θ, θ̄
]

We assume f (θ) > 0 everywhere.

Definition. Mechanism Γ (Σ, t, q):

Strategies σ ∈ Σ

Transfers: t (σ) In this environment, this is the price of the
good.

Allocations: q (σ) : A→ [0, 1]
Probability of sale.

Definition. Direct Mechanism Γ (Θ, t, q): In a direct mechanism, strategies are
“claims” about type.

Transfers: t (θ)
In this environment, this is the price of the
good.Allocation: q (θ) : Θ→ [0, 1]
Probability of sale.

Why focus on direct mechanisms?

Definition. Incentive Compatible

a direct mechanism is incentive compatible if the strategy θ is
optimal for a player of type θ.

Proposition. Revelation Principle. Determine the types who play each σ in the
indirect mechanism. Construct the direct
mechanism by assigning the same allocation
q and payment t to anyone who claims to be
one of these types in the direct mechanism.
Telling the truth (σ′ (θ) = θ) is optimal in
the direct mechanism by construction since
each type is being assigned an outcome that
that type had no incentive to move away
from in the indirect mechanism.

For every mechanism there is an equivalent incentive compatible direct
mechanism. That is, for every Γ (Σ, t, q) with optimal strategies σ (θ) there
is a direct Γ′ (t′, q′) with optimal strategies σ′ (θ) = θ such that t (σ (θ)) =

t′ (θ) and q (σ (θ)) = q′ (θ).

Notation. Utility Under Direct Mechanism
The first term in u

(
θ̃|θ
)

is the
“claimed” type, the second term is
the actual type.

u
(
θ̃|θ
)
= θq

(
θ̃
)
− t
(
θ̃
)
.

Notation. Incentive Compatible [I.C.]:

u (θ|θ) ≥ u
(
θ̃|θ
)
∀θ, θ̃ ∈ Θ

Notation. Utility Under I.C. Direct Mechanism We can suppress the “claimed type.”

u (θ) = θq (θ)− t (θ).

Notation. Individually Rational [I.R.]

u (θ) > 0 ∀θ ∈ Θ Technically, Interim Individual Ratio-
nality
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Posted Price

Example. Our First Mechanism. Exercise. Is posted price I.C.? Is it I.R.?
What is the seller’s expected revenue
for uniform F when p = 1

2 .

q (θ) =

 1 θ ≥ p

0 θ < p

t (θ) =

 p θ ≥ p

0 θ < p

Lottery Selling

Example. Our Second Mechanism. Exercise. Is lottery selling I.C.? Is it
I.R.? What is the seller’s expected
revenue? Is there a p and p̃ such that
expected revenue is larger than the
posted-price mechanism?q (θ) =


1 θ ≥ p
1
2 θ ∈ ( p̃, p)

0 θ < p

t (θ) =


p θ ≥ p

p̃ θ ∈ (2p̃, p)

0 θ < p

Characterizing I.C. Mechanisms.

Lemma. Monotonicity of q. This is an intuitive result and comes
from subtracting these two inequalities
from each other θq (θ)− t (θ) ≥ θq

(
θ̃
)
−

t
(
θ̃
)

and θ̃q
(
θ̃
)
− t
(
θ̃
)
≥ θ̃q (θ)− t (θ).

If Γ is I.C., q increases in θ.

Lemma. Monotonicity, convexity and smoothness of u (θ) . This is perhaps less intuitive. θq
(
θ̃
)
−

t
(
θ̃
)

is increasing and convex in θ.
Its max is as well. Smoothness result
follows from this and the derivative is a
result of the envelope theorem.

If Γ is I.C., u (θ) increases and is convex in θ and is almost-everywhere
smooth. Where it is smooth, u′ (θ) = q (θ).

Lemma. Payoff Equivalence The utility is the integral of its deriva-
tive with u (θ) added as a constant of
integration. Some additional technical
arguments are needed to guarantee this.
See text.

u (θ) = u (θ) +
´ θ
θ q (x) dx

Lemma. Revenue Equivalence From payoff equivalence: u (θ) =

u (θ) +
´ θ
θ q (x) dx

θq (θ) − t (θ) = θq (θ) − t (θ) +´ θ
θ q (x) dx

t (θ) = t (θ) + [θq (θ)− θq (θ)]−
´ θ
θ q (x) dx
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Proposition. A mechanism is I.C. if and only if. Necessity has been established above.
Sufficiency is proven in the text on page
14. I.C. can be established from these
two conditions.

1. q is increasing in θ.

and

2. Revenue equivalence holds.

Lottery Selling

Our Second Mechanism.
Problem. Confirm Revenue Equiva-
lence

q (θ) =


1 θ ≥ p
1
2 θ ∈ ( p̃, p)

0 θ < p

t (θ) =


p θ ≥ p

p̃ θ ∈ (2p̃, p)

0 θ < p

Constructing Prices for Some Mechanisms

Problem. Everyone Plays.

Construct I.C. t: In this mechanism, everyone wins.

Θ = [0, 1]

q (θ) = 1
2

t (0) = 0

Problem. Linear Lottery #1

Construct I.C. t: In this mechanism, your probability of
winning is your valuation. t (θ) = 1

2 θ2

Θ = [0, 1]

q (θ) = θ

t (0) = 0

Problem. Linear Lottery #2 In this everyone has at least 1
2 probabil-

ity of getting the item.
Construct I.C. t:

Θ = [0, 1]

q (θ) = θ+1
2
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t (0) = 0

Problem. Which yields a higher expected revenue if θ ∼ U (0, 1)?

Characterizing I.R. Mechanisms.

Proposition. Characterization of I.R. and I.C. Mechanisms. This is implied by I.R. since I.R. re-
quires this for every type. It implies
I.R. since u is monotonic (established
above).

An I.C. mechanism is I.R. iff u (θ) ≥ 0.

Optimal Mechanisms

Proposition. A Revenue Maximizing Mechanism is a Posted Price Mecha-
nism with p∗ = Arg.Maxp∈[θ ,θ]p (1− F (p)). Note that p (1− F (p)) is the expected

revenue since 1− F (p) is the probabil-
ity the buyer is willing to pay p.This follows from the results below.

Theorem. Bauer Maximum Principle.

An extreme point is the generalization of a
corner. It is any point such that if that

point is removed, the resulting set remains
convex.

A continuous convex function attains its maximum on a compact convex
set at an extreme point.

Lemma. Extreme Points of the Set of I.C. and I.R. q are steps.

The extreme points of q are all q such that q (θ) = 0 for θ < θ∗ and
q (θ) = 1 for θ > θ∗.

Lemma. Expected Revenue is a Linear Function of q.
This requires f (αq) = α f (q) and
f (q + q′) = f (q) + f (q′). Proving this
would be a valuable exercise.Pricing a Single Divisible Good

Buyer:

We now assume buyer gets θv (q) for consuming q of the good. v is strictly increasing and strictly
concavev′ > 0, v′′ < 0.

u (q, t) = θv (q)− t. This form of the utility function is lim-
iting. Each type has a utility function
that is simply a vertically stretched
version of the others.

Seller:

Knows v (q) but not θ.

Variable cost function is qc. c < θ̄v (0) and there is some q∗ < ∞
such that c = θ̄v (q∗). These ensure that
something can be sold and that there is
never an infinite amount sold.
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θv (q) might look something like this.

Characterizations

Proposition. Characterization of I.C. Mechanisms

Γ (q, t) is I.C. iff

1) q is increasing

2) t (θ) = t (θ) + [θv (q (θ))− θv (q (θ))]−
´ θ
θ v (q (x)) dx Note the similarity in the transfer

characterization. It can be derived in
the same way as in the previous section.
[θv (q (θ))− θv (q (θ))] is the differ-

ence in utility to the lowest type.Proposition. Characterization of I.R. Mechanisms

Γ (q, t) that is I.C. is I.R. iff

1) t (θ) ≤ θv (q (θ))

Proposition. Optimal Transfers in I.C. and I.R. Mechanisms Notice that t (θ) = t (θ) +
[θv (q (θ))− θv (q (θ))]−

´ θ
θ v (q (x)) dx

is increasing in t (θ) which can be
at most θv (q (θ)). Plugging this in
provides the expression.

In an optimal mechanism, t (θ) = θv (q (θ))−
´ θ
θ v (q (x)) dx

The transfers of an optimal mechanism are the difference be-
tween (θv (q (θ)) the utility to a buyer of type θ of getting q (θ)) and´ θ
θ v (q (x)) dx an “information rent.”

If, for instance, θ = 0 then this is just
the average utility a type θ buyer would
get by claiming some type below θ.

Notice
´ θ
θ v (q (x)) dx = 1

θ−θ

´ θ
θ (θ − θ) v (q (x)) dx. Thus, the

information rent is the average utility difference between buyers of
types θ and θ of claiming any type between these two.

Example. A Linear Mechanism

What are the optimal transfer functions for a mechanism with
Θ = [0, 1], v =

√
θ and q = θ?

θ
√

θ −
´ θ

0 x
√

xdx = θ
3
2 − 2

5 θ
5
2 = θ

3
2
[
1− 2

5 θ
]



mechanism design 8

Optimization

A seller’s expected profit is:

Π (q, t) =
ˆ θ̄

θ

[
θv (q (θ))−

ˆ θ

θ
v (q (x)) dx

]
f (θ) dθ−

ˆ θ̄

θ
cq (θ) f (θ) dθ

Π (q, t) =
ˆ θ̄

θ
θv (q (θ)) f (θ) dθ−

ˆ θ̄

θ

ˆ θ

θ
v (q (x)) dx f (θ) dθ−

ˆ θ̄

θ
cq (θ) f (θ) dθ

What is
´ θ̄
θ
´ θ
θ v (q (x)) dx f (θ) dθ. It is the expected value of the

function g (θ) =
´ θ
θ v (q (x)) dx. We can use the property:

E (g (θ)) = g (θ) +
ˆ θ̄

θ
g′ (t) (1− F (t)) dt

g (θ) = g (θ) +
ˆ θ

θ
g′ (t) dt

E (g (θ)) =
ˆ θ̄

θ
g (θ) f (θ) dθ +

ˆ θ̄

θ

(ˆ θ

θ
g′ (t) dt

)
f (θ) dθ

Switch order:

E (g (θ)) = g (θ) +
ˆ θ̄

θ

(
g′ (t)

) (ˆ θ̄

t
f (θ) dθ

)
dt

g (θ) = g (θ) +
ˆ θ̄

θ

(
g′ (t)

)
(1− F (t)) dt

This gives:

ˆ θ̄

θ

ˆ θ

θ
v (q (x)) dx f (θ) dθ =

ˆ θ̄

θ
v (q (θ)) (1− F (θ)) dθ

We now have:

Π (q, t) =
ˆ θ̄

θ
θv (q (θ)) f (θ) dθ−

ˆ θ̄

θ
v (q (θ)) (1− F (θ)) dθ−

ˆ θ̄

θ
cq (θ) f (θ) dθ

Π (q, t) =
ˆ θ̄

θ

[
v (q (θ))

(
θ − 1− F (θ)

f (θ)

)
− cq (θ)

]
f (θ) dθ
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One way to maximize such a thing is to pick v (q (θ))
(

θ − 1−F(θ)
θ

)
−

cq (θ) that is maximum pointwise, initially ignoring the monotonicity
demand on q. This is strictly concave by the concavity

of v.

v′ (qθ)

(
θ − 1− F (θ)

f (θ)

)
= c

Since v′ (qθ) is decreasing by the concavity of v, this has a (unique)
solution iff:

v′ (qθ)

(
θ − 1− F (θ)

f (θ)

)
> c

Otherwise, the optimal choice is q (θ) = 0. Suppose v′ (qθ)
(

θ − 1−F(θ)
θ

)
>

c is true, then when is the solution monotonic?

v′ (q (θ)) =
c

θ − 1−F(θ)
f (θ)

q (θ) must be increasing, which implies by concavity that v′ (q (θ))
must be decreasing. This will be true if and only if θ − 1−F(θ)

θ is

increasing or if f (θ)
1−F(θ) is increasing. The second, sufficient condition, is

known as increasing hazard rate condi-
tion.

Logarithmic Example

Example. v (q) = ln (q + 1). θ ∼ U (0, 1). c = 1
2 . Note that f (θ)

1−F(θ) = 1
1−θ is increasing.

1
q (θ) + 1

(2θ − 1) =
1
2

As a more general result, when utility is
logarithmic, and the distribution of types is
uniform, the allocation function is linear at
any point where q (θ) > 0.q (θ) = (4θ − 3)

q (θ) =

 4θ − 3 θ ≥ 3
4

0 θ < 3
4

Optimal t (θ) for θ ≥ 3
4

t (θ) =

 θln (4θ − 2)−
´ θ

3
4

ln (4x− 2) dx θ ≥ 3
4

0 θ < 1
2
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Generalized Screening

Environment

Notation. Types θ ∈ Θ

Outcomes a ∈ A

Utility of agent: u (a, θ)− t Note that utility is still quasi-linear.
This is one aspect where our analysis is
not as general as it could be.

Notation. Direct Mechanisms

Γ (q, t) is made up of:

q : Θ→ A q is called the “decision rule”

t : Θ→ R

Implementability

Definition. Incentive Compatibility

In this setting I.C. means u (q (θ) , θ)− t (θ) ≥ u (q (θ′) , θ)− t (θ′)
for all θ, θ′ ∈ Θ

Definition. Implementable q

A decision rule q is implementable if there is Γ (q, t) which is I.C.

Proposition. Necessary Condition for Implementability

q is implementable if for θ1, θ2 ∈ Θ: u
(
q
(
θ1) , θ1)− u

(
q
(
θ2) , θ1) ≥

u
(
q
(
θ1) , θ2)− u

(
q
(
θ2) , θ2) This property is called “weak mono-

tonicity.” Two types θ1 and θ2 might
both like what θ1gets over what θ2 gets,
but the strength of that preference must
be weakly stronger for θ1. This ensures
that for any particular pair of types, we
can find transfers that gets the types to
sort appropriately.

Examples

Example. Is q
(
θ1) = a, q

(
θ2) = b, q

(
θ3) = c weakly monotone?

θ1 θ2 θ3

a 4 2 0
b 1 1 1
c 0 −1 3

Is it implementable? Yes. t
(
θ1) = 3, t

(
θ2) = 1, t

(
θ3) = 2
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Example. Is q
(
θ1) = a, q

(
θ2) = b, q

(
θ3) = c weakly monotone?

θ1 θ2 θ3

a 0 −1 1
b 1 0 −1
c −1 1 0

Is it implementable? No. What happens here is that, while
we can find transfers to satisfy truth-
telling for any single pair, there is no set
of transfers that simultaneously satisfy
truth-telling for every pair.

Characterization

Proposition. Necessary and Sufficient Condition for Implementability This condition is called cyclic mono-
tonicity. As we tour around the type-
space, we keep track of the differences
in utilities that θi and θi+1 get for
θi’s allocation. This condition says
that for any tour, this sum must be
positive, or equivalently, the average
∑k−1

i=1 [u(q(θi),θi)−u(q(θi),θi+1)]
k−1 must be

positive.

q is implementable if and only if for every cyclic, finite sequence of
types

(
θ1, θ2, ..., θk

)
that begins and ends with the same θ1 = θk, 0 ≤

∑k−1
i=1

[
u
(
q
(
θi) , θi)− u

(
q
(
θi) , θi+1)].

Example. Is q
(
θ1) = a, q

(
θ2) = b, q

(
θ3) = c monotone?

No, consider the cyclic sequence(
θ1, θ3, θ2, θ1) = −1− 1− 1 = −3 < 0θ1 θ2 θ3

a 0 −1 1
b 1 0 −1
c −1 1 0

Corollary. A Simple Sufficient Condition for Implementability Every type likes what that he gets better
than anyone else likes it.

For every pair θ1, θ2, u
(
q
(
θ1) , θ1)− u

(
q
(
θ1) , θ2) ≥ 0.

Exercise. Check this sufficient condition for q
(
θ1) = a, q

(
θ2) = b,

q
(
θ3) = c.

θ1 θ2 θ3

a 4 2 0
b 1 1 1
c 0 −1 3

Environments where Weak Monotonicity is Sufficient for Imple-
mentability

One-Dimensional Environments.

In these environments, types in Θ can be sorted onto the real line
based on their preferences over some ordering of the outcomes A.
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Definition. Type Ordering�R �R may not be complete even if R is.

u (a, θ)− u (a′, θ) > u (a, θ′)− u (a′, θ′) for all a,a′ ∈ A where a R a′

and not a′ R a That is, type θ is higher than θ′ when
he cares more about the differences
between the outcomes in the ordering
induced by R.

u (a, θ)− u (a′, θ) = 0 for all a,a′ ∈ A where a R a′ and a′ R a

That is, all types care equally about out-
comes which are not strictly ordered.

Definition. Monotone Decision Rules

A decision rule is “monotone with respect to R when θ �R θ′

implies q (θ) R q (θ′). Higher types get higher outcomes.

Lemma. Weakly Monotone Decision Rules are Monotone In fact, they are equivalent when �R is
complete.

Weakly Monotone q are monotone with respect to R. ’

Definition. One Dimensional Type-Space

Θ is said to be one-dimensional with respect to R when �R is
complete.

Proposition. Monotonicity is Sufficient for Implementability in One-
Dimensional Spaces Imagine taking a cyclic tour of the

type-space, keeping track of the average
differences. By time you return to
the starting point, the sum must be
positive.

ForΘ is bounded1 and one-dimensional with respect to ordering R on A.

1 Bounded means u (a′, θ)− u (a, θ) has
a finite upper-bound.

A decision rule that is monotonic with respect to R is implementable.

Rich Environments.

Definition. Rich Type-Space

A type space if rich if for any a, b ∈ A (finite A) where aRb then
every possible u (a) such that u (a) > u (b) is contained in the set of
possibility utilities u (a) ∈ {u (a, θ) : θ ∈ Θ} .

Proposition. Sufficiency of Weak Monotonicity in Rich Type-Spaces

Θ is rich, then weak monotonicity of q is sufficient for implementability.
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Revenue Equivalence and Individual Rationality.

Assumption. Θ is convex and u (a, θ) is a convex function.

Proposition. Revenue Equivalence in General Settings

If Γ (q, t) is I.C. then Γ (q, t′) is I.C. if and only if t′ = t + a for a ∈ R.

Definition. Individual Rationality with Outside Options

A mechanism is individually rational with respect to outside op-
tion a if for all θ, u (q (θ) , θ)− t (θ) ≥ u (a, θ)

Lemma. Individual Rationality in One-Dimensional Settings Here, θ is the “smallest” element with
respect to the order �R.

A mechanism is individually rational with respect to outside option a if
and only if for all θ, u (q (θ) , θ)− t (θ) ≥ u (a, θ)

Bayesian Mechanism Design

Selling a Single Indivisible Good Among Multiple Buyers

Buyer:

Buyers: I = {1, 2, .., N}
Types: θi Known only to the buyer, not the seller.

Transfers: ti

u (1|θi) = θi − t Utility of consuming the good.

u (0|θi) = 0 No consumption.

Seller:

Maximizes revenue.

Believes θi ∼ F (θ) independently, θ ∈ Θ =
[
θ, θ̄
]N

We assume f (θ) > 0 everywhere.

Definition. Direct Mechanism Γ (Θ, t, q): In a direct mechanism, strategies are
“claims” about type.

Transfers: t (θ)
This is now a vector.

Allocation: q (θ) : Θ→ ∆ ∆ is the set of probability vectors of
length N adding up to at most 1. These
are the probabilities of sale.

Notation. Expected Utilities We take these expectations against
“truthful” play of other types.

Expected allocation: Qi (θi) =
´

Θ−i
qi (θi, θ−i) f−i (θ−i) dθ−i

Expected transfer Ti (θi) =
´

Θ−i
ti (θi, θ−i) f−i (θ−i) dθ−i

Expected Utility of Generic Claim: Ui
(
θ̃i|θi

)
= θiQi

(
θ̃i
)
+ Ti

(
θ̃i
)

Expected Utility of Truth: Ui (θi) = Ui (θi|θi) = θiQi (θi) + Ti (θi)
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Definition. Incentive Compatible Truth-telling is optimal when others are
assumed to tell the truth.

A direct mechanism is incentive compatible if truth-telling is a
Bayesian Nash Equilibrium of Γ.

Ui (θi|θi) ≥ Ui
(
θ̃i|θi

)
for all i and θ̃i ∈

[
θ, θ̄
]

.

Proposition. Revelation Principle The proof is a straightforward outcome.
Construct q and t for Γ′. If there is no
incentive to deviate in Γ, then there will be
no incentive to deviate in Γ′.

For any mechanism Γ with equilibrium strategies σ. There is a direct
mechanism Γ′ and a truthful equilibrium such that these equilibria in Γ and
Γ′ have the same outcome distributions and transfers for each type vector θ.

Definition. Individual Rationality

A direct mechanism that is I.C. is individually rational if

U (θi) ≥ 0 for all i and θ̃i ∈
[
θ, θ̄
]

.

Characterizations

Lemma. Monotonicity of Qi The proof is very similar to the one
used in the screening section.

For I.C. mechanisms, Qi (θi) is weakly increasing in θi for all i.

Lemma. Monotonicity, Convexity of Ui

For I.C. mechanisms, Ui is increasing and convex. Further, U′i (θi) =

Qi (θi).

Lemma. Payoff Equivalence Again, this is the integration of the
derivative of Ui found above with Ui (θ)
as constant of integration.Ui (θi) = Ui (θ) +

´ θi
θ

Qi (x) dx

Proposition. Revenue Equivalence

Ti (θi) = Ti (θ) + [θiQi (θi)− θQi (θ)]−
´ θi
θ

Qi (x) dx
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Proposition. Characterization of I.C. Mechanisms

Γ is I.C. iff,

1) Qi is increasing.

2) Ti (θi) = Ti (θ) + [θiQi (θi)− θQi (θ)]−
´ θi
θ

Qi (x) dx

Proposition. Characterization of I.C. & I.R. Mechanisms

Γ is I.C. iff,

1) Qi is increasing.

2) Ti (θi) = Ti (θ) + [θiQi (θi)− θQi (θ)]−
´ θi
θ

Qi (x) dx

3) Ti (θ) ≤ θQi (θ)

Examples

Example. Auction with Uniform Distribution and Two Bidders

Qi (θi) = θi, θi ∈ [0, 1] and Ti (0) = 0. Why Qi (θi) = θi?

Ti (θi) = θ2
i −
´ θi

0 xdx = θ2
i −
´ θi

0 xdx = 1
2 θ2

i Is this accurate for first-price auction?
What about second?

Example. Auction with Uniform Distribution and Two Bidders and a
Reserve

Qi (θi) = 0 when θi ≤ 1
2 and Qi (θi) = θi when θi ≥ 1

2

Ti (θ) =
[
θ2

i
]
−
´ θi

1
2

xdx = 1
2 θ2

i +
1
8

Which do you think is more profitable for the seller?

Maximizing Revenue

In a revenue maximizing mechanism, it must be: Ti (θ) = θQi (θ). All transfers are increasing in Ti (θ)

Lemma. Transfer Functions Under Revenue Maximization

Ti (θi) = θiQi (θi)−
´ θi
θ

Qi (x) dx
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Note. Rewriting the Revenue Function The first equality follows in the same
way as in the screening section. The
second comes from the fact that
Qi (θi) =

´
Θ−i

qi (θi) dΘ−i .
∑N

i=1
´ θ̄
θ

(
θiQi (θi)−

´ θi
θ

Qi (x) dx
)

f (θi) dθi

= ∑N
i=1
´ θ̄
θ Qi (θi)

(
θi −

1−F(θi)
f (θi)

)
f (θi) dθi

= ∑N
i=1
´

Θ qi (θi)
(

θi −
1−F(θi)

f (θi)

)
f (θi) dθi

As before, we can try to maximize this pointwise. To do this, sim-
ply pick qi (θi) = 1 whenever

(
θi −

1−F(θi)
f (θi)

)
is maximal within the N

values (unless that maximum is also negative). We get:

Lemma. Optimal qi Ignoring Monotonicity Let θi − 1−F(θi)
f (θi)

= ψ (θi).

For any θ, qi (θi) = 1 when ψ (θi) = max {ψ (θ1) , ψ (θ2) , ..., ψ (θn)} >
0 and qi (θi) = 0 otherwise.

Suppose ψ (θi) is strictly increasing. Then, q (θi) is increasing
which implies Qi (θi) is increasing.

Proposition. Optimal qi when ψi (θi) is Strictly Increasing

For any θ, qi (θi) = 1 when ψ (θi) = max {ψ1 (θ1) , ψ2 (θ2) , ..., ψn (θn)} >
0 and qi (θi) = 0 otherwise.

However, notice that if all ψi are identical and increasing, ψ (θi) =

max {ψ (θ1) , ψ (θ2) , ..., ψ (θn)} > 0 if and only if θi = max (θ). Thus
we have: Where θi = max (θ) means θi is the

maximal element of the vector θ.

Proposition. Optimal qi when F are identical and ψ (θi) is Strictly In-
creasing

For any θ, qi (θi) = 1 when θi = max (θ), and ψ (θi) ≥ 0, qi (θi) = 0
otherwise.

One might think that any auction which is incentive compatible
and awards the item to the highest bidder would be optimal. This,
however, does not incorporate the optimality condition ψ (θi) ≥ 0.
Under what conditions would this be a problem?
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Example. Auction with Uniform Bidders Revisited

Suppose:θi ∼ U [0, 1] The optimal auction format for two
bidders with uniform value is not
simply second price, but second price
with a reserve!

ψ (θi) = 2θi − 1 ≥ 0 when θi ≥ 1
2 .

Optimal Rule:

The optimal rule is i wins when θi > θj ≥ 1
2 . Thus Qi (θi) = 0

when θi ≤ 1
2 and Qi (θi) = θi when θi ≥ 1

2

Transfers:

Ti (θ) =
[
θ2

i
]
−
´ θi

1
2

xdx = 1
2 θ2

i +
1
8

Revenue: What about in the case of no reserve?
2
´ 1

0

(
1
2 x2
)

dx = 1
32

´ 1
0

(
1
2 θ2

i +
1
8

)
dθi =

5
12

Maximizing Welfare

Designer wants to maximize: ∑I θiqi (θ)

The optimal choice is qi (θ) = 1 if θi = max {θ1, ..., θn} with transfer
functions: Ti (θi) = θiQi (θi)−

´ θi
θ

Qi (x) dx

Public Goods

Notation. Public good: g = {0, 1}
Utility: θig− ti

Decision Rule: q : θ → {0, 1}
Cost of producing good: c > 0

Budget Balance

Definition. Ex-Post Budget Balance

∑ ti (θ) ≥ cq (θ)

Definition. Ex-Ante Budget Balance´
Θ ∑ ti (θ) f (θ) dθ ≥ c

´
Θ ∑ q (θ) f (θ) dθq (θ)
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Proposition. Equivalence of Ex-Ante and Ex-Post BB Pick two agents. The first one covers
the ex-post deficit but is given a bonus
equal to the expected ex-post deficit
given type. Clearly, on average, these
balance. A second agent is then asked
to cover the expected ex-post deficit
given the type of the first. But, this
expected deficit, averaged over all types
of the first must also be zero! If there
is an ex-ante surplus, subtract that ex-
ante surplus as a constant from some
random agent, and continue.

Ex-post implies ex-ante. Furthermore, for any mechanism that is
ex-ente BB, there is a mechanism with the same decision rule and
equivalent expected transfers for every type which is ex-post BB.

0 3

0 0,0 0,1
3 1,0 1,1

c is 4.

Value is 3. For each person.
Ex-ante cost is 1.
Let Player 1 cover the deficit.

0 3

0 0,0 0-1,1
3 1-1,0 1+2,1

0 3

0 0,0 -1,1
3 0,0 3,1

Now notice that 1 has different incentives, and does not want to
tell the truth!

If θ1 = 3, expected value is 0 vs 1
2 for saying θ1 = 0.

Player 2 now compensates (or is compensated by) 1 for the expected
amount of the original deficit based on 1’s type. If θ1 = 0, player 2 takes
1
2 from the government, and the government takes 1

2 from player 1. If
θ1 = 3, player 2 gives the government 1

2 and the government gives 1
2

to player 1. These are ex-post neutral transfers!

0 3

0 0+ 1
2 ,0- 1

2 -1+ 1
2 ,1- 1

2
3 0- 1

2 ,0+ 1
2 3- 1

2 ,1+ 1
2

1
2 ,− 1

2 - 1
2 , 1

2
- 1

2 , 1
2

5
2 , 3

2

Notice that these bring the ex-ante incentives for player 1 back to
their original values. θ1 = 0 expects utility 1 for telling the truth and
0 for saying θ1 = 0 and again has incentive to tell the truth.

Lemma. Ex-Ante Budget Characterization Previously, we’ve been looking at
revenue maximizing mechanisms in
which case it is always optimalUi (θ) =
0.

∑i∈I −Ui (θ) +
´

Θ q (θ)
[
∑i∈I

(
θi −

1−Fi(θi)
fi(θi)

)]
f (θ) dθ

Definition. Pivot Mechanism If θ = 0, q∗ (θ) = q∗ (θ, θ−i) then ti = 0.
Otherwise, pays c−∑i 6=j θjti (θ) = θq∗ (θ, θ−i) + (q∗ (θ)− q∗ (θ, θ−i))

(
c−∑i 6=j θj

)

Lemma. Pivot is Incentive Compatible and Individually Rational.

Proof. Consider a particular value of θ−i. Player is pivotal if θi ≥(
c−∑i 6=j θj

)
. Player wants to be pivotal if θi ≥

(
c−∑i 6=j θj

)
. Thus,
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if θi ≥
(

c−∑i 6=j θj

)
, the player has incentive to report θi (or anything

higher), if θi <
(

c−∑i 6=j θj

)
, the player has incentive to report θi or

anything lower. This is true for any θ−i, it must be true on average as
well. Further, if θi = 0, the player is not pivotal and ti = 0.

Example. Pivot Mechanism

θi ∈ [0, 30]

θ1 = 10

θ2 = 20

θ3 = 30

c = 40

Suppose q is the efficient rule.

1 pays 0

2 pays 0

3 pays 40− (10 + 20) = 10

Notice that this is not ex-post budget balanced!

Impossibility

Proposition. Impossibility of Budget Balanced I.C. I.R. Mechanisms

A first best, incentive compatible and individually rational mechanism
does not exist except in trivial cases.

Proof. (Sketch) Suppose we could find a mechanism where total rev-
enue is

´
Θ q∗ (θ)

[
∑i∈I

(
θi −

1−Fi(θi)
fi(θi)

)]
f (θ) dθ. Notice that this has nothing to do with

any particulars of the mechanism.
We can, but no such mechanism will produce revenue at least´

Θ q∗ (θ) c.

Maximum Revenue of the Pivot The Pivot Achieves Highest Possible
Ex-Ante Revenue. If it isn’t budget-
balanced, no mechanism is!c−∑i 6=j θj for any pivotal type and θ for any non-pivotal agent.

∑i∈P

(
c−∑i 6=j θj

)
+ ∑i∈NP θ(

∑i∈P c−∑i∈P ∑i 6=j θj

)
+ ∑i∈NP θ

(∑i∈P c− [(P− 1)∑i∈P θi + P ∑i∈NP θi]) + ∑i∈NP θ

∑i∈P c− (P− 1)∑I θi −∑i∈NP θi + ∑i∈NP θ

Pc− (P− 1)∑I θj −∑i∈NP
(
θj − θ

)
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What is possible?

A budget balanced, mechanism has:´
Θ q (θ)

[
∑i∈I

(
θi −

1−Fi(θi)
fi(θi)

)
− c
]

f (θ) dθ ≥ 0

Ex-ante welfare:´
Θ q (θ) [∑ θi − c] f (θ) dθ

Use Lagrange Method:´
Θ q (θ) [∑ θi − c] f (θ) dθ−λ

´
Θ q (θ)

[
∑i∈I

(
θi −

1−Fi(θi)
fi(θi)

)
− c
]

f (θ) dθ

´
Θ q (θ) (1 + λ)

[
∑
(

θi − λ
1+λ

1−Fi(θi)
fi(θi)

)
− c
]

f (θ) dθ

Set q = 1 when ∑I θi > c + ∑I
λ

1+λ
1−Fi(θi)

fi(θi)

What λ allows a balanced budget, though? That’s a difficult prob-
lem.

Suppose θ1 and θ2 are uniformly distributed from 0 to 1.

∑I θi > c + ∑I
λ

1+λ
1−Fi(θi)

fi(θi)

θ1 + θ2 > c + λ
1+λ (2− θ1 − θ2)

1+2λ
1+λ (θ1 + θ2) > c + 2λ

1+λ

(θ1 + θ2) >
1+λ

1+2λ c + 2λ
1+2λ

Let 1+λ
1+2λ c + 2λ

1+2λ = s (c)

q = 1 when θ1 + θ2 ≥ s (c)

What we need is,´
Θ q (θ)

[
∑i∈I

(
θi −

1−Fi(θi)
fi(θi)

)
− c
]

f (θ) dθ = 0´
Θ q (θ) [2 (θ1 + θ2)− 2− c] f (θ) dθ = 0´
θ1+θ2≥s(c) [2 (θ1 + θ2)− 2− c] f (θ) dθ = 0

Suppose c = 1.´ 1
s−θ1

´ 1
s−1 [2 (θ1 + θ2)− 3] dθ1dθ2´ 1

s−1
´ 1

s−x [2 (x + y)− 2] dydx = 1
6 (s− 2)2 (4s− 5)

1
6 (s− 2)2 (4s− 5) = 0

s = 5
4

What is the efficiency lost?´ 1
s−1
´ 1

s−x [x + y− 1] dydx = 1
6 (−2 + s)2 (−1 + 2s)

For s = 1, 1
6

For s = 5
4 , 9

64

84.38% of first-best efficiency is possible.



mechanism design 21

What would a monopolist do?

Max
´

Θ q (θ)
[
∑i∈I

(
θi −

1−Fi(θi)
fi(θi)

)
− c
]

f (θ) dθ

q = 1 if ∑i∈I

(
θi −

1−Fi(θi)
fi(θi)

)
≥ c

2 (θ1 + θ2)− 2 ≥ c

θ1 + θ2 ≥ c+2
2

If c = 1, θ1 + θ2 ≥ 3
2

Compare these:

First Best: θ1 + θ2 ≥ 1

Second Best θ1 + θ2 ≥ 5
4

Monopolist θ1 + θ2 ≥ 3
2

Bilateral Trade

The usual utility functions apply. However, ts will be assumed to be
the transfer that the seller receives.

Seller eats: θs + ts otherwise ts

Buyer eats: θb − tb otherwise −tb

Notation. Type of the seller θs ∈ Θs =
[
θs, θ̄s

]
Type of the buyer θb ∈ Θb =

[
θb, θ̄b

]
Definition. A direct mechanism is q, ts, tb where q : Θs ×Θb → [0, 1]
(probability of sale).

Notation. Ex-Ante Utility

Qs (θs) = Eθb (q (θb, θs)) and Ts (θs) = Eθb (t (θb, θs))

Qb (θb) = Eθs (q (θb, θs)) and Tb (θb) = Eθs (t (θb, θs))

US (θs) = (1−Qs (θs)) θs + Tb (θb) Almost nothing is new here.

Ub (θb) = (Q (θb)) θb − Tb (θb)

Definition. Individual Rationality

Us (θs) ≥ θs ∀θs

Ub (θb) ≥ 0 ∀θb

Lemma. Monotonic Utility (the sellers in the reverse of the usual way).

Proof. By the envelope condition, the derivatives are:

US (θs) = (1−Qs (θs)) which is decreasing in θs.

Ub (θb) = (Q (θb)) which is increasing in θb.



mechanism design 22

Corollary. Characterization for IR

Us
(
θ̄s
)
≥ θ̄s

Ub (θb) ≥ 0

Proposition. Characterization of I.C. Mechanisms For the buyer, we’ve already done this.

Γ is I.C. for the buyer iff,

1) Qb is increasing.

2) Tb (θb) = Tb (θb) + [θbQb (θb)− θbQb (θb)]−
´ θb
θb

Qb (x) dx

The seller has a sign or two reversed, we’ve already done this.

Γ is I.C. for the buyer iff,

1) Qs is decreasing.

2) Ts (θs) = Ts (θs) +
[
θ̄s
[
1−Qs

(
θ̄s
)]
− θs [1−Qs (θs)]

]
−´ θ̄s

θs
(1−Qs (x)) dx

Budget

We might like ts = tb. But in general, we will say:

Definition. Ex-post Budget Balance

ts − tb ≤ 0. The remainder is “burned” money. It
is an interesting open question as to
where and what extent money burning
is useful in economic mechanisms.

Definition. Ex-ante Budget Balance

Ts − Tb ≤ 0.

Proposition. Ex-post and Ex-ante Budget Balance Are Equivalent

As in the public goods environment. If one is satisfied, the other
can be satisfied as well, and for the same reason (risk neutrality).

Welfare Maximization

We seek to maximize the expected value of q (θs, θb) θb − tb +

(1− q (θs, θb)) θs + ts . It is also an interesting open question as
to where and what extent withholding
is useful in economic mechanisms.First best is q = 1 if and only if θb ≥ θs.

Theorem. First Best is impossible with and I.C. I.R. Mechanism

This is the celebrated Myerson, Satterthwaite (1983) result. One of the
most important impossibilities in mechanism design, and an important
negative reflection of the welfare theorems of economics. Efficiency is not
possible when there is asymmetric information.
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Proof. The pivot mechanism is I.C. and I.R. and minimizes the ex-
ante deficit. And yet, under the pivot mechanism, there is always an
ex-post deficit. Thus, there is always an ex-ante deficit.

Definition. The Pivot Mechanism

ts (θ) = q∗
(
θ̄s, θb

)
θ̄s +

(
q∗ (θ)− q∗

(
θ̄s, θb

))
θb

tb (θ) = q∗ (θs, θb) θb + (q∗ (θ)− q∗ (θs, θb)) θs

Lemma. Pivot is I.C. and I.R.

Proof. (Sketch) Intuitively, if I am pivotal, I pay the other person’s
valuation. But, if I am pivotal, the other’s valuation is below mine
and so I am always willing to tell the truth about my valuation. Fur-
thermore:

Us
(
θ̄s
)
= θ̄s + 0

Ub
(
θ̄b
)
= 0

Lemma. Pivot Minimizes Ex-Ante Revenue Deficit

Proof. Ts (θs) = Ts
(
θ̄s
)
+ θ̄s

[
1−Qs

(
θ̄s
)]
− θs [1−Qs (θs)] −´ θ̄s

θs
(1−Qs (x)) dx

Ts (θs) = Us
(
θ̄s
)
− θs [1−Qs (θs)]−

´ θ̄s
θs

(1−Qs (x)) dx

But, Us
(
θ̄s
)

is maximized and so TS is minimized.

Similarly,

Tb (θb) = Tb (θb) + [θbQb (θb)− θbQb (θb)]−
´ θb
θb

Qb (x) dx

Tb (θb) = −Ub (θb) + [θbQb (θb)]−
´ θb
θb

Qb (x) dx

Ub is minimized, and so Tb is maximized.

Together Ts − Tb is minimized.

Lemma. Pivot Maintains Ex-Post Revenue Deficit

Proof. ts (θ) − tb (θ) = q∗
(
θ̄s, θb

)
θ̄s +

(
q∗ (θ)− q∗

(
θ̄s, θb

))
θb −

q∗ (θs, θb) θb − (q∗ (θ)− q∗ (θs, θb)) θs

As long as q is not constant:

= q∗
(
θ̄s, θb

) [
θ̄s − θb

]
+ q∗ (θs, θb) [θs − θb]

Note that if q∗
(
θ̄s, θb

)
= 1 then θb ≥ θ̄s and so q∗

(
θ̄s, θb

) [
θ̄s − θb

]
≤

0
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Similarly, if q∗ (θs, θb) = 1 then θb ≥ θs and so q∗ (θs, θb) [θs − θb] ≤
0

Furthermore, these are strictly negative for some values whenever
trade is strictly efficient sometimes.

Welfare Maximization-Second Best

The designer seeks to maximize E [q (θ) θb + (1− q (θ)) θs] = E (θs) +

E [q (θ) [θb − θs]]

We can focus on E [q (θ) [θb − θs]].

Buyers transfer −Ub (θb) + E
(

q (θ)
[
θb −

1−Fb(θb)
fb(θb)

])
Seller’s transfer Us

(
θ̄s
)
− E

(
(1− q (θ))

[
θs +

Fs(θs)
fs(θs)

])
Exact-ex-ante Budget Balance:

−Ub (θb)+E
(

q (θ)
[
θb −

1−Fb(θb)
fb(θb)

])
= Us

(
θ̄s
)
−E

(
(1− q (θ))

[
θs +

Fs(θs)
fs(θs)

])
E
(

q (θ)
[
θb −

1−Fb(θb)
fb(θb)

])
= Us

(
θ̄s
)
+Ub (θb)−E

(
(1− q (θ))

[
θs +

Fs(θs)
fs(θs)

])
Since Us

(
θ̄s
)
+ Ub (θb) ≥ θ̄s

E
(

q (θ)
[
θb −

1−Fb(θb)
fb(θb)

])
≥ θ̄s − E

(
(1− q (θ))

[
θs +

Fs(θs)
fs(θs)

])
Modified:

E
(

q (θ)
[
θb −

1−Fb(θb)
fb(θb)

])
≥ θ̄s−E

([
θs +

Fs(θs)
fs(θs)

])
+E

(
q (θ)

[
θs +

Fs(θs)
fs(θs)

])
E
(

q (θ)
[
θb −

1−Fb(θb)
fb(θb)

− θs − Fs(θs)
fs(θs)

])
≥ θ̄s − E

([
θs +

Fs(θs)
fs(θs)

])
Notice the right side doesn’t depend on q. Call it K. The budget

constraint is:

E
(

q (θ)
[
θb −

1−Fb(θb)
fb(θb)

− θs − Fs(θs)
fs(θs)

])
− K ≥ 0

Now maximize:

E [q (θ) [θb − θs]] + λ
[

E
(

q (θ)
[
θb −

1−Fb(θb)
fb(θb)

− θs − Fs(θs)
fs(θs)

])
− K

]
E [q (θ) [θb − θs]] + E

(
q (θ)

[
λθb − λ

1−Fb(θb)
fb(θb)

− λθs − λ
Fs(θs)
fs(θs)

])
− λK

Combine:

E
[
q (θ)

[
(1 + λ) θb − λ

1−Fb(θb)
fb(θb)

− (1 + λ) θs − λ
Fs(θs)
fs(θs)

]]
− λK

In each case, we are maximizing the expected value of:

q (θ)
[
(1 + λ) θb − λ

1−Fb(θb)
fb(θb)

− (1 + λ) θs − λ
Fs(θs)
fs(θs)

]
Set q = 1 when the inside is positive:

θb − λ
1+λ

1−Fb(θb)
fb(θb)

≥ θs +
λ

1+λ
Fs(θs)
fs(θs)
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And find the λ that balances the budget.

Welfare Maximization-Second Best Numerical:

Suppose both are uniform 0, 1.

θb − λ
1+λ (1− θb) ≥ θs +

λ
1+λ θs

θb − λ
1+λ (1− θb) ≥ θs +

λ
1+λ θs

θb − θs ≥ λ
1+2λ

Thus, the optimal rule has a “gap” structure. Let s = λ
1+2λ . Budget

balance is:

E
(

q̃ (θ)
[
θb −

1−Fb(θb)
fb(θb)

− θs − Fs(θs)
fs(θs)

])
= θ̄s − E

([
θs +

Fs(θs)
fs(θs)

])
E (q̃ (θ) [2θb − 1− 2θs]) = 1− E (2θs)

E (q̃ (θ) [2θb − 1− 2θs]) = 1− E (2θs)

E (q̃ (θ) [2θb − 1− 2θs]) = 0´ 1−s
0
´ 1

θs+s [2θb − 1− 2θs] d (θb) d (θs) = 0
1
6 (s− 1)2 (4s− 1) = 0

s =
{

1
4 , 1
}

The only budget balanced gaps are 1 and 1
4 , the welfare maximiz-

ing of these is 1
4 .

Dominant Strategy Mechanism
Design

Dominant Strategy Auctions

Back to the auction setting. θi ∈
[
θ, θ̄
]
. I ∈ {1, 2, ..., N}.

Buyer’s Utility: θi − ti if good is awarded, −ti otherwise.

Seller’s Utility: ∑N
i=1 ti.

Remark. In dominant strategy mechanism design, ex-ante calculations
ARE NOT RELEVANT for individuals. We should not calculate ex-
ante utility nor ex-ante budget balance.

Proposition. Revelation Principle

Suppose we have a generic game. Γ which has terminal nodes with out-
comes that specify a probability distribution over who gets the good and
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transfers. Suppose σi (θi) is a dominant strategy for i and type θi, then
there is a direct mechanism Γ′ which has action space Θi for each player, the
outcome of any σ (θ) is the same and θi is a dominant strategy for i with θi.

Definition. Dominant Strategy Incentive Compatible [DSIC]

A direct mechanism Γ (q, t) is DSIC if for each type and each
buyer:

θiqi (θi, θ−i)− ti (θi, θ−i) ≥ θiqi
(
θ̃i, θ−i

)
− ti

(
θ̃i, θ−i

)
For all θi, θ̃i and θ−i ∈ Θ−i.

Example. θi ∈ [0, 1].

θi ≥ 0.5, θj ≥ 0.5, qi = 0.5, ti = 0.25.

θi ≥ 0.5, θj ≤ 0.5, qi = 1, ti = 0.25.

θi ≤ 0.5, θj ≤ 0.5, qi = 0.5, ti = 0..

Exercise. Is it DSIC?

Suppose θj ≤ 0.5. Does i want to tell the truth?

θi ≥ 0.5. θi − 0.25 ≥ θi
2 ? Yes!

θi ≤ 0.5 θi
2 ≥ θi − 0.25? Yes!

Suppose θj ≥ 0.5. Does i want to tell the truth?

θi ≥ 0.5. θi
2 − 0.25 ≥ 0? Yes!

θi ≤ 0.5 0 ≥ θi
2 − 0.25? Yes!

Definition. Ex-Post Individually Rational

A direct mechanism is Ex-post individually rational [EPIR] if:

θiqi (θi, θ−i)− ti (θi, θ−i) ≥ 0

For all θi and θ−i ∈ Θ−i.

Exercise. Is the above mechanism EPIR?

Note. A dominant strategy mechanism can be thought of as a series
of screening mechanisms.

DSIC requires θiqi (θi, θ−i)− ti (θi, θ−i) ≥ θiqi
(
θ̃i, θ−i

)
− ti

(
θ̃i, θ−i

)
for all θi, θ̃i and θ−i ∈ Θ−i.

Fix a θ−i. Our goal is to get i to tell the truth. That is a screening
mechanism. To construct a DSIC mechanism, we need to construct a
series of incentive compatible screening mechanisms for every θ−i!

Because of this, we can characterize dominant strategy mecha-
nisms using what we learned from screening!
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Proposition. Characterization of DSIC Mechanisms

A direct mechanism is DSIC if and only if for every i and θ−i

1. qi (θi, θ−i) is increasing in θi.

2. ti (θi, θ−i) = ti (θ, θ−i)+ (θiqi (θi, θ−i)− θqi (θ, θ−i))−
´ θi
θ

qi (x, θ−i) dc

Lemma. Characterization of EPIR Mechanisms

A direct mechanism is EPIR if and only if for every i and θ−i:

1. θq (θ, θ−i)− ti (θ, θ−i) ≥ 0

Proposition. A class of DSIC and EPIR mechanisms.

qi (θ) = 1
n if ψi (θi) ≥ 0 and θi ≥ θi. Where n is number of θj =

max {θ1, θ2, ..., θN}
qi (θ) = 0 otherwise.

ti = qi
[
min

{
θ̃i|qi

(
θ̃i, θ−i

)
> 0

}]
Exercise. Is it individually rational? Check for θ. Is it incentive com-
patible? Suppose q = 0. To get q ≥ 0, I would have to claim a higher
type. But clearly then, the minimum type I have to claim to win is
above my real type. In this case, qθi − qθ̃ < 0. What about the other
way around?

Applications. Suppose the seller has a belief about Θ, but knows
nothing about how the buyers believe. Then, he can still implement
the revenue maximizing auction. Let ψi (θi) be the buyer’s “virtual”
type as we found earlier. This can be calculated because the seller
has a belief about Θ. However, note that the raffle auction is not
canonical.

Suppose the seller knows nothing about Θ. He can still implement
the welfare maximizing auction. Let ψi = θi.

Nothing is lost in allocation by using DSIC!

Dominant Strategy Public Goods

We already know the following result. An incentive compatible,
individually rational first-best mechanism does not exist except in
trivial situations. Thus, one cannot exist using dominant strategy
mechanisms. What can be achieved is further limited.
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Lemma. Characterization of Deterministic DSIC Mechanisms

A deterministic mechanism is DSIC if and only if for every θ−i there is
some θ̃i such that for any θi ≥ θ̃i, q = 1 and ti (θi, θ−i)− ti (θ, θ−i) = θ̃i,
and for θi < θ̃i, q = 0.

Lemma. A class of DSIC and EPIR mechanisms.

qi (θ) = 1 if ∑I ψi (θi) ≥ c

qi (θ) = 0 otherwise.

ti = qi
[
min

{
θ̃i|qi

(
θ̃i, θ−i

)
= 1

}]

Exercise. Is it individually rational? Check θ. Is it incentive compati-
ble?

Example. Let ψi = θi. This is the pivot mechanism.

Recall that for two people, the utility-maximizing mechanism had,
a rule θ1 + θ2 ≥ s. Can this be achieved by a DSIC, EPIR mechanism?
Yes, but we cannot get budget balance. Why? These mechanisms
require a “discount.” In general, people are only required to pay the
minimum they have to get their desired result. This isn’t a problem
in auctions. All the money goes to the seller!

Proposition. Characterization of deterministic DSIC, Exactly-Budget
Balances, EPIR Mechanisms

A deterministic dominant strategy, exactly-budget balanced and ex-post
individually rational mechanism has the form:

q = 1 if θi ≥ τ1 and θ2 ≥ τ2 and τ1 + τ2 = c.

This is an extremely limited form and vastly reduces the available
welfare!

Dominant Strategy Bilateral Trade

Proposition. Characterization for Deterministic DSIC Mechanisms

A deterministic mechanism for bilateral trade is DSIC if and only if.

For the buyer, and any type of the seller, θs, there is some θ̂b such that for
any θ̃b ≥ θ̂b, q

(
θ̃b, θs

)
= 1 and tb

(
θ̃b, θs

)
− tb (θb, θs) = θ̂b

That is, there is some type the buyer can claim where trade will take place
and he will pay θ̃b more in transfer.
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For the seller, and any type of the buyer, θb, there is some θ̂s such that for
any θ̃s ≤ θ̂s, q

(
θ̃s, θb

)
= 1 and ts

(
θ̃s, θb

)
− ts

(
θ̄s, θs

)
= θ̂s

That is, there is some type the seller can claim where trade will take place
and he will receive θ̃s more in transfer.

Proposition. A class of DSIC and EPIR mechanisms.

q = 1 if ψb (θb) ≥ ψs (θs)

ts = q
[
max

{
θ̃s|q

(
θ̃s, θb

)
≥ 1

}]
tb = q

[
min

{
θ̃b|q

(
θ̃b, θs

)
≥ 1

}]

Example. Let ψb = θb and ψs = θs. This is the pivot mechanism.

But it is not budget balanced! Recall that for 2 people, the second-
best had sale when θs − θb ≥ 1

4 . Let ψb = θb − 1
4 and ψs = θs.

Definition. Posted Price Mechanism

There is a fixed p. If θs < p < θb then trade takes place and t = p
for both. Otherwise, it doesn’t and there is no payment.

Proposition. A deterministic DSIR, EPIR, Exactly-Budget Balanced
Mechanism is a Posted Price.

In fact, posted-price turns out to be the welfare maximizing mechanism
among the DSIC, EPIR class even if budget balance is weakened to Ex-post
budget balance. This is the result of Hagerty, Kathleen

M., and William P. Rogerson. "Ro-
bust trading mechanisms." Journal of
Economic Theory 42.1 (1987): 94-107.

Non-Transferable Utility
Until now we have considered utility functions of the type Ui (a, θi) +

mi where a is an outcome and mi is some amount of money. We have
assumed that the individuals have additive and linear (risk neutral)
preference for money (or some other kind of transfer). When that
is violated, or when there is no money to transfer, we can take the
extreme view of simply making money part of the outcomes, if it
exists and letting the utility functions simply be Ui (a, θi).

However, since there is no money to use for comparison here, the
utility values are meaningless. We will instead assume everyone has
a preference relation Ri over the set A of outcomes.
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Definition. Unrestricted Domain

R is the set of possible preference profiles over A (all linear order-
ings).

Definition. Direct Mechanism

A mapping f : RN → A. Everyone reports their preferences and
then an outcome is chosen.

Example. Voting

A might be some set of candidates to choose from. f is a decision
rule about how to choose candidates. “Voting Problem.”

Example. Matching

Examples. Suppose A is the set of possible pairings of Men and
Women in a group. This is close to “Matching,” except that people
can have arbitrary preferences over all possible sets of pairs.

Example. Generalized Versions of Old Problems

A might be a combination of distributions of money and distri-
bution of some good. For instance, who gets a car and how much
money each person ends up with.

Definition. Social Choice Function

The decision rules f are called “Social Choice Functions.”

Definition. Incentive Compatibility

A social choice function is said to be dominant strategy incentive
compatible or “Strategy-Proof” if for all Ri and R−i:

f (Ri, R−i) Ri f
(

R′i, R−i
)

That is, the player has incentive to tell the truth about his prefer-
ences regardless of other preferences.

We would like to operate in this very abstract realm of the unre-
stricted domain. But we can’t.
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Definition. Dictatorial Mechanisms

f is dictatorial if there is some i such that for all R ∈ RN and
a ∈ A, f (R) Ri a.

i is said to be a dictator.

Theorem. Gibbard-Satterthwaite Theorem

In the unrestricted domain R, if A has at least 3 elements then f is
Strategy-Proof if and only if it is dictatorial.

The if is clear. The only if deserves some attention. Suppose f is
strategy-proof.

Below, I give some intuition for the proof. For more, look at the
paper here: https://people.cs.pitt.edu/~kirk/CS1699Fall2014/gibbard-
sat.pdf.

Lemma. Unanimity

Any strategy proof social choice function respects unanimity.

Proof. Without loss of generality, there must be an outcome where x
is chosen. Start there. Raise x in player 1′s profile, another outcome
cannot be chosen or 1 would never report this. Thus x can be raised
to the top of 1′s profile and x is still chosen. This is true for everyone
so that if x is on top of everyone’s list, then x must be chosen. Now
reorder 1’s profile below x. The choice must remain x or 1 would
never report it. This is true for everyone so the social choice function
respects unanimity.

Proof for N = 2 and M = 3. Sudoku Style.

xyz xzy yxz yzx zxy zyx

xyz x x
xzy x x
yxz y y
yzx y y
zxy z z
zyx z z

By Unanimity
xyz xzy yxz yzx zxy zyx

xyz x x Not z
xzy x x
yxz y y
yzx y y
zxy z z
zyx z z
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Or else player 1 would lie to get x.
xyz xzy yxz yzx zxy zyx

xyz x x x
xzy x x
yxz y y
yzx y y
zxy z z
zyx z z

Choose this to be x.
xyz xzy yxz yzx zxy zyx

xyz x x x
xzy x x
yxz y y
yzx y y
zxy Not x, y z z
zyx z z

You cannot give someone their worst match when a better match is
unilaterally achievable.

xyz xzy yxz yzx zxy zyx

xyz x x x
xzy x x x
yxz y y
yzx y y
zxy z z z
zyx z z z

When everything is achievable in your column/row, you must get
your favorite in that column/row.

xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y
yzx y y
zxy z z z
zyx z z z

If you ever get your worst, you must always get your worst in that
column/row.
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xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y Not z, Not x
yzx y y
zxy z z z
zyx z z z

You can’t give someone their worst when better is unilaterally
achievable.

xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y y
yzx y y y
zxy z z z
zyx z z z

When everything is achievable in your column/row, you must get
your favorite in that column/row.

xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y y
yzx y y y
zxy z z z
zyx Not x, Not y z z z

You can’t give someone their worst when better is unilaterally
achievable.

xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y y
yzx y y y
zxy z z z
zyx Not x, Not y z Not x, Not y z z z

If someone gets their second favorite, you can’t offer their favorite.
xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y y
yzx y y y
zxy z z z z
zyx z z z z z z
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When everything is achievable in your column/row, you must get
your favorite in that column/row.

xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y y
yzx y y y
zxy z z z z z z
zyx z z z z z z

If you ever get your worst, you must always get your worst in that
column/row.

xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y y
yzx Not x, Not z y y y
zxy z z z z z z
zyx z z z z z z

You can’t give someone their worst when better is unilaterally
achievable.

xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y y y
yzx y y y y
zxy z z z z z z
zyx z z z z z z

When everything is achievable in your column/row, you must get
your favorite in that column/row.

xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y Not x, Not z y y Not x, Not z y
yzx y Not x, Not z y y Not x, Not z y
zxy z z z z z z
zyx z z z z z z

If someone gets their second favorite, you can’t offer their favorite.
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xyz xzy yxz yzx zxy zyx

xyz x x x x x x
xzy x x x x x x
yxz y y y y y y
yzx y y y y y y
zxy z z z z z z
zyx z z z z z z

Single-Peaked Preferences

Since we can’t hope to make much progress working in the abstract
universe, we are left with two choices:

1. Relax the solution concept.

2. Work in a “restricted domain.”

The first is kind of difficult. There is a short section in the book on
it, but it is for a very limited case. Instead, we focus on relaxing the
domain. Most interesting questions can operate in a relaxed domain.
For instance, two-sided matching.

Definition. Single-Peaked Preferences

A = {1, 2, ..., K} outcomes are labeled. Example. Candidates on a Left-Right
Spectrum.

Each person likes some k (i) best. k (i) Ria for all a.

k (i) + j Ri k (i) + j + 1 and k (i)− j Ri k (i)− j− 1

Proposition. DSIC, Non-Dictatorial Rules Exist for Single-Peaked Prefer-
ences

Definition. Median Voter Rule If there are an even number of agents,
create a fake one with fake preferences
and repeat (this breaks the tie).f chooses the median of {k (1) , k (2) , ..., k (N)}.

Proof. Suppose N is odd (even proof is similar with small adjust-
ment). Order the players in terms of their peak. Then the median is

k
(

N+1
2

)
. Anyone below the median prefers a value at least as low

as k
(

N+1
2

)
but, anyone below the median can only raise the me-

dian. The opposite is true for anyone above the median. The median
person already gets his/her favorite.
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Matching/Market Design

Two-Sided Matching

Marriage Market

Notation. Men: m1, m2, ..., mn. Women: w1, w2, ..., wn

Each has preferences over the other side.

Notation. Let P () represent the preferences of a player. P (m1) =

w1, w2, m1, w3, ..., wp

Assumption. Preferences are strict.

Definition. Matching

A matching µ is a mapping such that µ (mi) ∈ W ∪ {mi} and vice
versa. The matching must be of “order two” such that µ (µ (mi)) =

mi and µ (µ (wi)) = wi. This guarantees no two people are
matched to the same person.

Mechanism Design Perspective

The set of all possible µ is the set of outcomes A. Here, we don’t
operate in the universal domain. Each individual only has prefer-
ences over their own mate, not over the entire matching. That is, m1

doesn’t care about who m2’s spouse is. His utility is the same under
any matching where he has the same spouse.

We want to implement some f on A over this domain of prefer-
ences. But what f ?

Definition. Individually Rational

µ is individually rational if µ (mi) �mi mi and µ (wi) �wi wi. That
is, everyone likes their partner better than being alone.

Definition. Stable

µ is stable if there does not exist a pair m̃ and w̃ such that. w̃ �m̃

µ (m̃) and m̃ �w̃ µ (w̃). That is, there is not a pair that prefer to be
paired with each other than their match under µ. These pairs are
called “blocking pairs” since the block the stability of µ.
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Proposition. Stability Implies Pareto Efficiency

Pareto improvement implies at least one person i is better off under µ̃

than in (stable) µ. But in µ̃, i’s partner (j) must be worse off, since other-
wise, i and j would be a blocking pair in µ.

In two-sided matching we would like f to select a stable and indi-
vidually rational matching from the given preference profiles.

Exploring Stability

(Assume everyone likes being matched better than being alone).

M preferences w1 w2 w3

m1 1 3 2

m2 2 1 3

m3 3 2 1

W preferences m1 m2 m3

w1 1 2 3

w2 1 2 3

w3 1 2 3

Suppose µ is {(m1, w3) , (m2, w2) , (m3, w1)}. This is not stable.
m1, w1 is a blocking pair.

Suppose µ is {(m1, w1) , (m2, w2) , (m3, w3)}. This is stable. There is
no blocking pair. In fact, this is the unique stable out-

come. However, sometimes there are
multiple stable outcomes.

M preferences w1 w2 w3

m1 1 2 3

m2 2 1 3

m3 3 2 1

W preferences m1 m2 m3

w1 2 1 3

w2 1 2 3

w3 1 2 3

This has two stable matchings

{(m1, w1) , (m2, w2) , (m3, w3)}
{(m1, w2) , (m2, w1) , (m3, w3)}

Notice that in these two stable matches, the men can all agree that
{(m1, w1) , (m2, w2) , (m3, w3)} is at least as good as {(m1, w2) , (m2, w1) , (m3, w3)}.
Notice that the women agree on the opposite. This is called the lattice
structure of stable matchings.

Proposition. Lattice Structure

Among all stable matches we can order them. µ1 �M µ2 if all men agree
that µ1 is at least as good. �W will be defined analogously. It turns out that
�M is always the opposite of �W!!! If the men agree µ1 is better than the
women will agree that it is worse.
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Notation. Let’s refer to µM as the male-optimal and µW as the women-
optimal stable match.

There are two questions to ask, does a stable match always exist and,
is there a mechanism that chooses a stable match from a preference profile.
Both can be answered at once.

Gale-Shapley Mechanism (Algorithm)

Let’s start with the “Male’s Propose” version. The women line up.
The men go and stand in front of their favorite women. The woman
keeps her favorite man who is in front of her. Any rejected man then
moves to the next favorite woman whom he hasn’t already stood
in front of. At any point, a man can refuse to move on, and remain
alone. After all the proposals have been made, any pairs are matched
and anyone left over remains alone.

Lemma. The algorithm ends.

At some point, the males will have made proposals to everyone.

Proposition. The match is stable.

Proof. Suppose otherwise. There is a blocking pair. But m̃ must have
visited w̃ before his current match. She rejected him then and so
must now be matched with someone whom she likes at least as well
as m̃. Thus, this can’t be a blocking pair.

Corollary. Every MM has a stable outcome.

Proof. Because GS always completes.

Proposition. The match is male-optimal.

Proof. Suppose otherwise. There is a man m̃ who was the first to be
rejected by his “optimal” woman w̃. That means there is a man ñ
who w̃ rejected m̃ for at the first instance. w̃ likes ñ more than m̃. But
ñ must like w̃ at least as well as his optimal as well, since when he
proposed to w̃, he had not yet been rejected by his optimal woman.
Thus ñ likes w̃ better than his optimal woman. This implies that
the proposed optimal stable match is not stable at all. ñ and w̃ are a
blocking pair.
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If we switch the proposing sides, we get the woman-optimal match.

Thus, Gale-Shapley “implements” the social choice function f
which chooses the proposer-optimal stable match given any prefer-
ence profile. The question is. Is it DSIC?

Proposition. M-GS is not DSIC for W

Proof. Suppose everyone tells the truth, and there are at least two
stable matches. Then any women can truncate her preferences by
saying that being alone is better than being matched with anyone
worse than her W-optimal partner. This truncation cannot create
any new stable matchings. Intuition: If this woman was involved
in a blocking pair with someone the truncated for some match, she
will still block that match by threatening to be alone. The W-optimal
stable with original preferences is still stable. It is not the only stable
match and GS must produce it!

Proposition. Matchings and Stable Outcome

Anyone matched must be matched in any stable outcome.

Proposition. There is no DSIC Mechanism to Implement stable f .

Proof. Any f that always produces a stable outcome will have to pro-
duce the unique stable outcome if there is one. If there is more than
one stable outcome, there is someone who prefers another stable out-
come to the one that is chosen, but he/she can achieve that outcome
by truncating his/her preferences.

Proposition. There are DSIC Mechanisms that Implement Pareto Efficient
f

Example. Sequential Dictator-takes advantage of the indifferences in
preferences.

M preferences w1 w2 w3

m1 1 2 3

m2 2 1 3

m3 3 2 1

W preferences m1 m2 m3

w1 2 1 3

w2 1 2 3

w3 1 2 3

This has two stable matchings

{(m1, w1) , (m2, w2) , (m3, w3)}
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{(m1, w2) , (m2, w1) , (m3, w3)}
What is S.D. (m1, m2, m3) Outcome? {(m1, w1) , (m2, w2) , (m3, w3)}

[Stable]

What is S.D. (w1, w2, w3) Outcome? {(m2, w1) , (m1, w2) , (m3, w3)}
[Stable]

What is S.D. (w3, w2, w1) Outcome? {(m3, w1) , (m2, w2) , (m1, w3)}
[Unstable] (who blocks?)

Roommates

The roommate’s problem is similar to marriage problem, except that
everyone can be matched to anyone. Each ri has preferences over
entire set (not just one side).

Notation. Let P () represent the preferences of a player. P (r1) =

r2, r3, r4,r1

Assumption. Preferences are strict.

Definition. Matching

A matching µ is a mapping such that µ (ri) ∈ R and vice versa.
The matching must be of “order two” such that µ (µ (ri)) = ri. This guarantees no two people are

matched to the same person.

This problem is much harder and has received much less attention!

Definition. Individually Rational

µ is individually rational if µ (ri) �mi ri. That is, everyone likes
their partner better than being alone.

Definition. Stable

µ is stable if there does not exist a pair ri and rj such that. rj �ri

µ (ri) and ri �rj µ (ri). That is, there is not a pair that prefer to be
paired with each other than their match under µ. These pairs are
called “blocking pairs” since the block the stability of µ.

Proposition. There is not always a stable outcome.

P (r1) = r2, r3, r4, r1

P (r2) = r3, r1, r4, r2
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P (r3) = r1, r2, r4, r3

P (r4) = r1, r2, r3, r4

In any outcome, someone is paired with r4. Whoever that person
is, is someone’s favorite roommate. That person is willing to save him
from r4.

Proposition. There may be a stable outcome.

P (r1) = r2, r3, r4, r1

P (r2) = r4, r1, r3, r2

P (r3) = r2, r1, r4, r3

P (r4) = r1, r2, r3, r1

{1, 3} , {2, 4} is the unique stable outcome.

Algorithm. Irving’s Algorithm

Stage 1.

Step 1. Everyone proposes to their favorite. Anyone with no proposals
accepts. Anyone with two proposals accepts their favorite and rejects the
other.

Step 2. Upon being rejected, a proposer immediately moves to their next
favorite.

Step 3. When everyone has a proposal that has been accepted, stage 1
is done. If there is someone whom everyone has rejected, there is no stable
match.

Stage 2.

In a stable match, no one can be matched with anyone less desirable than
their currently accepted roommate. Cross off everyone below that, and do it
symmetrically. If B is unacceptable for A then also cross out A for B.

Stage 3.

Remove preference cycles.

Start with someone who has two or more choices. Who is their second
favorite? Who is that person’s least favorite? Who is that person’s second
favorite? We look for a cycle in the “last favorites.”
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Example. Irving’s Algorithm-No Stable Match Exists

4 6 2 5 3

6 3 5 1 4

4 5 1 6 2

2 6 5 1 3

4 2 3 6 1

5 1 4 2 3

1 proposes to 4 who accepts.

2 proposes to 6 who accepts.

3 proposes to 4 who rejects.

3 proposes to 5 who accepts.

4 proposes to 2 who accepts.

5 proposes to 4 who accepts (rejecting 1)

1 proposes to 6 who accepts (rejecting 2)

2 proposes to 3 who accepts

6 proposes to 5 who rejects

6 proposes to 1 who accepts

4 6 2 5 3

6 3 5 1 4
4 5 1 6 2
2 6 5 1 3

4 2 3 6 1

5 1 4 2 3

Now cross off:

4 6 2 5 3

6 3 5 1 4
5 1 6 2

2 6 5 1

4 2 3 6 1

5 1 4 2 3

6
3 5 4
5 2

2 5
4 2 3

1
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6

3 5 4

5 2

2 5

4 2 3

1

Now preference cycles.

6

3 5 4

5 2

2 5

4 2 3

1

2 to 5

3 to 2

4 to 5

3

We have a cycle

Remove 2,4 and 5,3

6

3 5

2

5

4 2

1

2 to 5

2

Remove 2,5

6

3

2

5

4

1

(1,6); (2,3); (4,5)
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4 6 2 5 3

6 3 5 1 4

4 5 1 6 2

2 6 5 1 3

4 2 3 6 1

5 1 4 2 3

Phase 1 leads to:

5 6

6 4

4 5

1 to 3

2 to 1

3 to 2

1 to 3

Remove 3,2 and 1,3 and 2,1

5 6

6 4

4 5

There is no stable match.

Definition. Individually Rational.

µ is Pareto efficient if µ (ri) �ri ri. That is, everyone likes their
partner better than being alone.

Definition. Pareto Efficient.

µ is Pareto efficient if there does not exist µ̃ such that for all i:
µ (ri) �ri µ̃ (ri).

Pareto Efficient Mechanisms.

Example. Rotating Dictator [RD]
They go in order, picking their favorites.
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Proposition. RD is Pareto Efficient

Proof. Suppose there is a Pareto improvement µ̃. There is some
player i who was the earliest to propose who has a different room-
mate. But he already has his favorite from the people who were not
removed before he picked and since he is the first, everyone before
him must be on the same teams.

Proposition. RD is not Individually Rational.

Example. Rotating Representative [RR]
They go in order. Proposing to their favorites who accept or reject.

Proposition. RR is Pareto Efficient

Proof. Suppose the outcome µ resulting from the Rotating Repre-
sentative mechanism is Pareto-suboptimal. There is a µ̃ that is a
Pareto-improvement over µ. Of those on a different team in µ̃, there
is an i who was the first to propose in RR. Suppose µ̃ includes i be-
ing matched with at least one partner not available when i proposed
under RR, then there is another player who proposed before i who
is on a different team under µ̃. This contradicts that i is the first such
proposer. Thus, the team that i receives in µ̃ were available when i
proposed under RR. i must have proposed to this team and it must
have been rejected. Thus, at least one person on this team prefers µto
µ̃ contradicting that it is a Pareto-improvement. Thus, µ is Pareto-
optimal.

Many-to-One Matching

Definition. Colleges

C = {C1, C2, ..., Cn} with space for q1, q2, ..., qn students each.

Students

S = {s1, s2, ..., sm}

Preferences

Assumption. Preferences

Students have a strict ordering over C
⋃
{s}.

Colleges have a strict ordering over S ∪ {c} where {c} represents that
any students lower in the ordering are worse than having unfilled quota.
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Definition. Matching

A matching µ is function that pairs each student with no more
than one college and each college with no more than qc students.

Assumption. µ (s) is the students’ college (or remaining alone)

µ (C) is the set of students attending the college and possibly some un-
filled slots: indicated by redundant inclusions of C.

Definition. Pairwise Stability

A matching is pairwise stable if it is not blocked by an individual
(a student wanting to remain alone or a college wanting to remove a
student without replacement) or a student college blocking pair (s, C)
such that C �s µ (s) and s �C

[
min�C (µ (C))

]
where min� indicates

the element of µ (C) which is minimal according to the ordering �C.

Definition. Group Stable

A matching µ is group stable if it is not blocked by a coalition A
where A ⊆ S

⋃
C such that there is another µ′ in which for every

s ∈ A, µ′ (s) ∈ A and µ′ (s) �s µ (s) and s ∈ µ′ (C) then either s ∈ A
or s ∈ µ (C) and µ′ (C) �C µ (C).

Proposition. A Matching is Group Stable if and only if it is Pairwise
Stable.

Proof. Only if is trivial. We prove if. Suppose otherwise. There is a pairwise
stable match that is not group stable. Then there is a blocking coalition A
under µ′. Pick C ∈ A. C likes its students under µ′ better than under µ.
That means there is at least some student in A that C likes better than at
least one of the current students (or open slots) and that student likes C
better than his current match. This contradicts pairwise-stability.

Algorithm. A Stable Matching Algorithm (1951)

Make Student-College pairs in the following way.
1. Find all pairs such that the student lists a college first and the college

lists the student in its top q. If there is none, look for instances where the
student listed a college second and the college listed the student in the top q.
Keep doing this until you find at least 1 match.

2. The students who are matched are guaranteed to do this well. Cross
of any worse college from their list and cross them from those college’s list.
Then repeat step 1 until no new matches are found.
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Example. Three Colleges, Four Students.

C1 has two slots and the others have 1 slot.

s1 : 3, 1, 2

s2 : 2, 1, 3

s3 : 1, 3, 2

s4 : 1, 2, 3
C1 : 1, 2, 3, 4

C2 : 1, 2, 3, 4

C3 : 3, 1, 2, 4
Round 1. Match s1, s2 and C1.

Cross off 3 from s2’s list and 2 from s1’s list.

s1 : 3, 1

s2 : 2, 1

s3 : 1, 3, 2

s4 : 1, 2, 3
C1 : 1, 2, 3, 4

C2 : 2, 3, 4

C3 : 3, 1, 4
Round 2. Match s2 with C2

s1 : 3, 1

s2 : 2

s3 : 1, 3, 2

s4 : 1, 2, 3
C1 : 1, 3, 4

C2 : 2, 3, 4

C3 : 3, 1, 4
Round 3. Match s3 with C1

s1 : 3, 1

s2 : 2

s3 : 1

s4 : 1, 2, 3
C1 : 1, 3, 4

C2 : 2, 4

C3 : 1, 4
Round 4. Match s1 with C3

s1 : 3

s2 : 2

s3 : 1
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s4 : 1, 2, 3
C1 : 3, 4

C2 : 2, 4

C3 : 1, 4
Round 5. Match s4 with C1

s1 : 3

s2 : 2

s3 : 1

s4 : 1
C1 : 3, 4

C2 : 2

C3 : 1
Match is s1, C3, s2, C2, s3, s4, C1

Proposition. The Algorithm Is Stable

Proof. Suppose otherwise, there is at least one s and C who like each
other better. But, for the match to finish C must be matched with its
top q in the modified preferences. Which means that C was removed
from s preferences at some point, implying that s was matched to a
college better than C. But since s’s matching can only get better, this
creates a contradiction.

Example. A Stable Matching Algorithm (Redux)

Try Gale-Shapley (hospitals propose) in the matching market:

C1, s1,s2. C2, s1. C3, s3

C1, s1,s2. C2, s2. C3, s3

C1, s1,s3. C2, s2.

C1, s3. C2, s2. C3, s1

C1, s3, s4. C2, s2. C3, s1

This is the same outcome. In fact, the mechanisms always produce
the same outcomes!

If Students-Propose:

s1, C3. s2, C2. s3, C1 s4, C1

The first is the hospital-optimal stable match, the second is the student-
optimal.
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Proposition. Stable Outcomes and Pareto Efficiency (By Side)

While the student-optimal stable match is Pareto-optimal for students, the
hospital-optimal match might not be Pareto-optimal for hospitals.

Example. Consider s2,s4, H1, s1, H2 and s3, H3. It is a Pareto improve-
ment for the hospitals.

Theorem. Rural Hospital

When preferences are strict, the set of students hired, and the set of posi-
tions filled, is the same in any stable matching. Any college that does not fill
its quota in some stable matching, gets the same set of students in any stable
matching.

Proposition. There is no Stable Mechanism that is Strategy-proof

Proof. The accepting side can manipulate the mechanism as before. If
there are two stable matches, the accepting side can pretend that all
but the students it gets in the best stable match are acceptable.


